

IFC 050 Hoja de datos técnica

# Convertidor de señal para caudalímetros electromagnéticos

- Para aplicaciones sencillas
- Varias salidas, incl. salida de pulsos activa y Modbus RS485
- Excelente relación calidad-precio



La documentación sólo está completa cuando se usa junto con la documentación relevante del sensor de caudal.



| 1 Caracteristicas del producto                                         | 3  |
|------------------------------------------------------------------------|----|
| 1.1 El estándar para aplicaciones sencillas                            | 3  |
| 1.2 Opciones y variantes                                               | 5  |
| 1.3 Posibilidades de combinación convertidor de señal / sensor de d    |    |
| 1.4 Principio de medida                                                |    |
| 2 Datos técnicos                                                       | 7  |
| Z Datos tecnicos                                                       | /  |
| 2.1 Datos técnicos                                                     | 7  |
| 2.2 Dimensiones y pesos                                                |    |
| 2.2.1 Alojamiento                                                      |    |
| 2.2.2 Placa de montaje, versión de pared                               |    |
| 2.3 Tablas de caudales                                                 | 17 |
| 2.4 Precisión de medida                                                | 19 |
| 3 Instalación                                                          | 20 |
| 2.1 Has provide                                                        | 20 |
| 3.1 Uso previsto                                                       |    |
| 3.2 Especificaciones de la instalación                                 |    |
| 3.3 Montaje de la versión compacta                                     |    |
| 3.4 Montaje de la cubierta, versión remota                             | 20 |
| 4 Conexiones eléctricas                                                | 22 |
| 4.1 Instrucciones de seguridad                                         | 27 |
| 4.2 Preparación de los cables de señal y de corriente de campo         |    |
| 4.2.1 Cable de señal A (tipo DS 300), construcción                     |    |
| 4.2.2 Longitud del cable de señal A                                    |    |
| 4.2.3 Esquema de conexión para el cable de señal y de corriente de car |    |
| 4.3 Puesta a tierra del sensor de caudal                               |    |
| 4.4 Conexión de la alimentación                                        | 25 |
| 4.5 Entradas / salidas, visión general                                 | 27 |
| 4.5.1 Descripción del número CG                                        |    |
| 4.5.2 Versiones de salidas fijas, no modificables                      |    |
| 4.6 Colocación correcta de los cables eléctricos                       | 28 |
| 5 Notas                                                                | 29 |
|                                                                        |    |

## 1.1 El estándar para aplicaciones sencillas

El convertidor de señal electromagnético **IFC 050** es la elección perfecta para la medida del caudal volumétrico en varios tipos de aplicaciones en la industria del agua, pero también en la industria de alimentos y bebidas.

El convertidor de señal puede combinarse con los sensores de caudal OPTIFLUX 1000, 2000, 4000, 6000 y con el WATERFLUX 3000. La salida representa los valores medidos para el caudal, masa y conductividad.

#### Este convertidor de señal de bajo coste tiene algunas características específicas:

- Una salida de pulsos activos para un sistema simple, como comandar un totalizador electromecánico
- Comunicación Modbus RS485 con un sistema de procesamiento de datos
- Aislamiento adicional del equipo electrónico y alojamiento para un alto rendimiento en áreas con humedad extrema y probabilidades de inundación
- Medida de caudal rentable para un amplio rango de condiciones de proceso, con un nivel de precisión muy aceptable



- ① Gran pantalla gráfica con 4 teclas tipo imán para accionar el convertidor de señal cuando el alojamiento esté cerrado
- 2 4 pulsadores para accionar el convertidor de señal cuando el alojamiento esté abierto.
- 3 Alimentación: 100...230 VAC y 24 VDC

#### Características principales

- Salidas disponibles: salida de corriente (incl. HART®), salida de frecuencia/pulsos activa, salida de estado y Modbus
- Manejo intuitivo con botones táctiles
- Excelente relación calidad-precio
- Diseño moderno de alojamiento robusto
- Posibilidad de montaje asimétrico
- Se encuentran disponibles todas las versiones con y sin pantalla
- Instalación y puesta en marcha simples
- Pantalla gráfica clara
- Una amplia gama de idiomas de funcionamiento de serie
- Pruebas de certificación para humedad y vibración
- Conversión de señal muy rápida

#### **Industrias**

- Agua y aguas residuales
- Alimentaria y de bebidas
- Calefacción, ventilación y acondicionamiento de aire (HVAC)
- Agricultura
- Acero

#### **Aplicaciones**

- Agua y tratamiento de aguas residuales
- Red de distribución de agua
- Instalación del riego
- Extracción de agua
- Estaciones de limpieza CIP

## 1.2 Opciones y variantes

### Concepto de convertidor de señal modular con pantalla



El concepto modular ofrece la oportunidad de combinar el IFC 050 con los sensores de caudal OPTIFLUX 1000, OPTIFLUX 2000, OPTIFLUX 4000, OPTIFLUX 6000 y el WATERFLUX 3000.

Con respecto a las versiones de alojamiento, se encuentran disponibles tanto un diseño compacto como remoto. El convertidor de señal para la versión compacta se monta directamente bajo un ángulo de 10° al sensor de caudal para una fácil lectura de la pantalla después de lluvia o heladas.

Si el punto de medida es de difícil acceso, o si las condiciones ambientales como la temperatura y los efectos de vibración impiden el uso de la versión compacta, se encuentra disponible un convertidor de señal remoto con un alojamiento montado en la pared.

#### Versión remota con alojamiento de pared con pantalla



Se emplea un cable de señal para conectar el sensor de caudal al convertidor de señal, para la alimentación y el procesamiento de señales. La misma unidad electrónica puede utilizarse en ambas versiones (compacta + de montaje en pared) sin configuración.

#### Versión remota con alojamiento de pared sin pantalla



Una versión ciega es la opción perfecta en una situación en la que la pantalla no es necesaria o se utiliza muy de vez en cuando.

Se puede conectar fácilmente una pantalla separada a la unidad electrónica para entrar en el menú. Esta herramienta se ofrece como una pieza de repuesto.

### 1.3 Posibilidades de combinación convertidor de señal / sensor de caudal

| Sensor de caudal | Sensor de caudal + convertidor de señal IFC 050 |                                            |
|------------------|-------------------------------------------------|--------------------------------------------|
|                  | Versión compacta                                | Versión remota con<br>alojamiento de pared |
| OPTIFLUX 1000    | OPTIFLUX 1050 C                                 | OPTIFLUX 1050 W                            |
| OPTIFLUX 2000    | OPTIFLUX 2050 C                                 | OPTIFLUX 2050 W                            |
| OPTIFLUX 4000    | OPTIFLUX 4050 C                                 | OPTIFLUX 4050 W                            |
| OPTIFLUX 6000    | OPTIFLUX 6050 C                                 | OPTIFLUX 6050 W                            |
| WATERFLUX 3000   | WATERFLUX 3050 C                                | WATERFLUX 3050 W                           |

## 1.4 Principio de medida

Un líquido eléctricamente conductivo fluye a través de un tubo, eléctricamente aislado, a través de un campo magnético. El campo magnético es generado por una corriente que fluye a través de un par de bobinas magnéticas.

Dentro del líquido se genera una tensión U:

U = v \* k \* B \* D

#### siendo:

v = velocidad de caudal media

k = factor de corrección de la geometría

B = fuerza del campo magnético

D = diámetro interno del caudalímetro

La tensión de señal U es recogida por los electrodos y es proporcional a la velocidad de caudal media v y, por consiguiente, a la velocidad de caudal Q. Se utiliza un convertidor de señal para amplificar la tensión de señal, filtrarla y convertirla en señales para la totalización, el registro y el procesamiento de la salida.

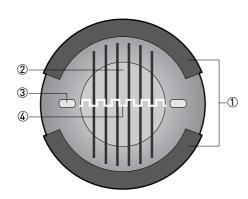



Figura 1-1: Principio de medida

- ① Bobinas
- 2 Campo magnético
- 3 Electrodos
- 4 Tensión inducida (proporcional a la velocidad de caudal)

## 2.1 Datos técnicos

- Los siguientes datos hacen referencia a aplicaciones generales. Si necesita datos más relevantes sobre su aplicación específica, contacte con nosotros o con su oficina de ventas.
- La información adicional (certificados, herramientas especiales, software...) y la documentación del producto completo puede descargarse gratis en nuestra página web (Centro de descargas).

#### Sistema de medida

| Principio de medida | Ley de Faraday de inducción                                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rango de aplicación | Medida continua del caudal volumétrico, velocidad de caudal, conductividad, caudal en masa (a densidad constante), temperatura de la bobina del sensor de caudal |

#### Diseño

| Construcción modular       | El sistema de medida consiste en un sensor de caudal y un convertidor de señal.                                     |
|----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Sensor de caudal           |                                                                                                                     |
| OPTIFLUX 1000              | DN10150 / 3/86"                                                                                                     |
| OPTIFLUX 2000              | DN251200 / 148"                                                                                                     |
| OPTIFLUX 4000              | DN101200 / 3/848"                                                                                                   |
| OPTIFLUX 6000              | DN10150 / 3/86"                                                                                                     |
| WATERFLUX 3000             | DN25600 / 124"                                                                                                      |
| Convertidor de señal       |                                                                                                                     |
| Versión compacta (C)       | IFC 050 C                                                                                                           |
| Versión remota (W)         | IFC 050 W                                                                                                           |
| Opciones                   |                                                                                                                     |
| Salidas                    | Salida de corriente (incl. HART <sup>®</sup> ), salida de pulsos, salida de frecuencia, salida de estado y/o alarma |
|                            | Nota: ¡no es posible utilizar la salida de pulso/frecuencia y la salida de estado al mismo tiempo!                  |
| Totalizador                | 2 totalizadores internos con un máx. de 10 dígitos (p. ej. para totalizar los unidades de volumen y/o de masa)      |
| Verificación               | Verificación integrada, funciones de diagnóstico: equipo de medida, detección de tubería vacía, estabilización      |
| Interfaces de comunicación | HART <sup>®</sup>                                                                                                   |
|                            | Modbus                                                                                                              |

| Pantalla e interfaz de usuario             |                                                                                                                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pantalla gráfica                           | Pantalla LCD, iluminada                                                                                                                                                        |
|                                            | Tamaño: 128 x 64 pixels, corresponde a 59 x 31 mm = 2,32" x 1,22"                                                                                                              |
|                                            | La temperatura ambiente por debajo de -25°C / -13°F puede afectar la lectura de la pantalla.                                                                                   |
| Elementos de funcionamiento                | 4 pulsadores para accionar el convertidor de señal cuando el alojamiento esté abierto.                                                                                         |
|                                            | 4 teclas magnéticas para accionar el convertidor de señal cuando el alojamiento esté cerrado.                                                                                  |
| Control remoto                             | ¡Sólo disponible el equipo genérico y no específico de DDS y DTMs!                                                                                                             |
|                                            | PACTware <sup>TM</sup> (incluyendo Equipo Tipo Director (DTM))                                                                                                                 |
|                                            | Comunicador HART <sup>®</sup> Hand Held de Emerson                                                                                                                             |
|                                            | AMS <sup>®</sup> de Emerson Process                                                                                                                                            |
|                                            | PDM <sup>®</sup> de Siemens                                                                                                                                                    |
|                                            | Todos los DTMs y controladores se encuentran disponibles sin cargo alguno desde la página web del fabricante.                                                                  |
| Funciones de la pantalla                   |                                                                                                                                                                                |
| Menú de funcionamiento                     | Ajuste de los parámetros empleando 2 páginas de medido, 1 página de estado, 1 página de gráficos (los valores medidos y los gráficos son libremente ajustables)                |
| Lenguaje de los textos de la               | Estándar: inglés, francés, alemán, holandés, portugués, sueco, español, italiano                                                                                               |
| pantalla (como el paquete del<br>lenguaje) | Europa del Este: inglés, esloveno, checo, húngaro                                                                                                                              |
| •                                          | Europa del Norte: inglés, danés, polaco, finlandés                                                                                                                             |
|                                            | Europa del Sur: inglés, turco                                                                                                                                                  |
|                                            | China: inglés, alemán, chino                                                                                                                                                   |
|                                            | Rusia: inglés, alemán, ruso                                                                                                                                                    |
| Units                                      | Unidades métrica, británica, y americana seleccionables desde las listas para caudal volumétrico / másico y cálculo, velocidad de caudal, conductividad eléctrica, temperatura |

#### Precisión de medida

| , recipient de mediad    |                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Precisión de medida máx. | Estándar:<br>±0,5% del valor medido ± 1 mm/s                                                      |
|                          | Opcional (precisión optimizada con calibración ampliada): ±0,25% del valor medido ± 1,5 mm/s      |
|                          | Para más información y las curvas de precisión vaya a <i>Precisión de medida</i> en la página 19. |
|                          | Están disponibles calibraciones especiales bajo pedido.                                           |
|                          | Electrónica de la salida de corriente: ±10 μA; ±100 ppm/°C (normalmente: ±30 ppm/°C)              |
| Repetibilidad            | ±0,1%                                                                                             |

## Condiciones de operación

| Temperatura                                         |                                                                                                                                                                             |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperatura de proceso                              | Consulte los datos técnicos para el sensor de caudal.                                                                                                                       |
| Temperatura ambiente                                | Dependiendo de la versión y combinación de las salidas.                                                                                                                     |
|                                                     | Es buena idea proteger el convertidor de fuentes externas de calor, así como de la luz directa del sol, para no reducir los ciclos de vida de los componentes electrónicos. |
|                                                     | La temperatura ambiente por debajo de -25°C / -13°F puede afectar la lectura de la pantalla.                                                                                |
| Temperatura de almacenamiento                       | -40+70°C / -40+158°F                                                                                                                                                        |
| Presión                                             |                                                                                                                                                                             |
| Producto                                            | Consulte los datos técnicos para el sensor de caudal.                                                                                                                       |
| Presión ambiente                                    | Atmósfera                                                                                                                                                                   |
| Propiedades químicas                                |                                                                                                                                                                             |
| Conductividad eléctrica                             | Todos los medios excepto agua: ≥ 5 µS/cm<br>(consulte también los datos técnicos para el sensor de caudal)                                                                  |
|                                                     | Agua: ≥ 20 µS/cm                                                                                                                                                            |
| Estado de agregación                                | Medios líquidos, conductivos                                                                                                                                                |
| Contenido en sólidos (volumen)                      | ≤ 10%                                                                                                                                                                       |
| Contenido en gases (volumen)                        | ≤ 3%                                                                                                                                                                        |
| Rango del caudal                                    | Para más información, vaya al capítulo "Tablas de caudales".                                                                                                                |
| Otras condiciones                                   |                                                                                                                                                                             |
| Categoría de protección según<br>IEC 529 / EN 60529 | IP66/67 (según NEMA 4/4X)                                                                                                                                                   |

## Condiciones de instalación

| Instalación                   | Para mas información, consulte el capítulo "Condiciones de instalación". |
|-------------------------------|--------------------------------------------------------------------------|
| Secciones de entrada / salida | Consulte los datos técnicos para el sensor de caudal.                    |
| Dimensiones y pesos           | Para mas información, consulte el capítulo "Dimensiones y peso".         |

## Materiales

| Alojamiento del convertidor de señal | Aluminio con recubrimiento de poliéster                                                                                                                                            |
|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sensor de caudal                     | Para los materiales del alojamiento, las conexiones a proceso, los recubrimientos, los electrodos de puesta a tierra y las juntas, vaya a los datos técnicos del sensor de caudal. |

# Conexión eléctrica

| General                | La conexión eléctrica debe realizarse de conformidad con la Directiva VDE 0100 "Reglas para las instalaciones eléctricas con tensiones de línea hasta 1000 V" o las |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | especificaciones nacionales equivalentes.                                                                                                                           |
| Alimentación           | 100230 VAC (-15% / +10%), 50/60 Hz;<br>240 VAC + 5% incluido en el rango de tolerancia.                                                                             |
|                        | 24 VDC (-30% / +30%)                                                                                                                                                |
| Consumo                | AC: 15 VA                                                                                                                                                           |
|                        | DC: 5,6 W                                                                                                                                                           |
| Cable de señal         | Sólo necesario para las versiones remotas.                                                                                                                          |
|                        | DS 300 (tipo A) Longitud máx.: 600 m / 1968 pies (dependiendo de la conductividad eléctrica y la versión del sensor de caudal)                                      |
| Entradas de los cables | Estándar: M20 x 1,5 (812 mm)                                                                                                                                        |
|                        | Opción: 1/2 NPT, PF 1/2                                                                                                                                             |

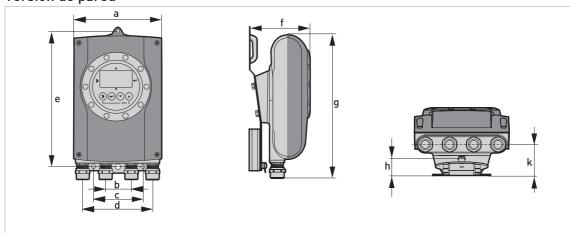
## Salidas

| General                      | Todas las salidas están eléctricamente aisladas unas de otras y de todos los demás circuitos.                                                           |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Todos los datos de operación y valores de salida se pueden ajustar.                                                                                     |
| Descripción de abreviaciones | U <sub>ext</sub> = tensión externa; R <sub>L</sub> = carga + resistencia;<br>U <sub>o</sub> = tensión de terminal; I <sub>nom</sub> = corriente nominal |

| Salida de corriente |                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------|
| Datos de salida     | Caudal                                                                                                            |
| Ajustes             | Sin HART®                                                                                                         |
|                     | Q = 0%: 020 mA; Q = 100%: 1021,5 mA                                                                               |
|                     | Identificación del error: 2022 mA                                                                                 |
|                     | Con HART®                                                                                                         |
|                     | Q = 0%: 420 mA; Q = 100%: 1021,5 mA                                                                               |
|                     | Identificación del error: 322 mA                                                                                  |
| Datos de operación  | I/O básico                                                                                                        |
| Activa              | Observe la polaridad de conexión.                                                                                 |
|                     | $U_{int, nom} = 20 \text{ VDC}$                                                                                   |
|                     | I ≤ 22 mA                                                                                                         |
|                     | $R_L \le 750 \ \Omega$                                                                                            |
|                     | HART® en terminales A                                                                                             |
| Pasiva              | Observe la polaridad de conexión.                                                                                 |
|                     | $U_{ext} \le 32 \text{ VDC}$                                                                                      |
|                     | I ≤ 22 mA                                                                                                         |
|                     | $U_0 \le 2 \text{ V a I} = 22 \text{ mA}$                                                                         |
|                     | $R_{L, m\acute{a}x} = \{U_{ext} - U_0\} / I_{m\acute{a}x}$                                                        |
|                     | HART® en terminales A                                                                                             |
| HART <sup>®</sup>   |                                                                                                                   |
| Descripción         | Protocolo HART® a través de la salida de corriente activa y pasiva                                                |
|                     | Versión HART <sup>®</sup> : V5                                                                                    |
|                     | Parámetro de Práctica Común Universal HART®: completamente soportado                                              |
| Carga               | $\geq$ 250 $\Omega$ a HART $^{\!0\!\!\!\!0}$ punto de test; jObserve la carga máxima para la salida de corriente! |
| Modo multi-punto    | Sí, salida de corriente = 4 mA                                                                                    |
|                     | Dirección multi-punto ajustable en el menú de funcionamiento 115                                                  |

| Datos de salida            | Caudal                                                                                                                                                                                      |  |  |  |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Función                    | Puede configurarse como salida de pulsos o salida de frecuencia                                                                                                                             |  |  |  |  |  |
| Rango de pulsos/frecuencia | 0,0110000 pulsos/s ó Hz                                                                                                                                                                     |  |  |  |  |  |
| Ajustes                    | Pulsos por unidad de volumen, masa o frecuencia máx. para el 100% de caudal                                                                                                                 |  |  |  |  |  |
|                            | Ancho del pulso: ajustable como automático, simétrico o fijo (0,052000 ms)                                                                                                                  |  |  |  |  |  |
| Datos de operación         | I/O básico + Modbus                                                                                                                                                                         |  |  |  |  |  |
| Activa                     | Esta salida está destinada a comandar totalizadores mecánicos o electrónicos directamente                                                                                                   |  |  |  |  |  |
|                            | U <sub>int, nom</sub> ≤ 20 V                                                                                                                                                                |  |  |  |  |  |
|                            | $R_V = 1 \text{ k}\Omega$                                                                                                                                                                   |  |  |  |  |  |
|                            | C = 1000 µF                                                                                                                                                                                 |  |  |  |  |  |
|                            | Totalizador mecánico de alta corriente $f_{m\acute{a}x} \leq 1 \; Hz$                                                                                                                       |  |  |  |  |  |
|                            | Totalizador mecánico de baja corriente<br>I ≤ 20 mA                                                                                                                                         |  |  |  |  |  |
|                            | $R_L \le 10~k\Omega$ para $f \le 1~kHz$ $R_L \le 1~k\Omega$ para $f \le 10~kHz$                                                                                                             |  |  |  |  |  |
|                            | cerrado: $U_0 \ge 12,5 \text{ V a I} = 10 \text{ mA}$                                                                                                                                       |  |  |  |  |  |
|                            | abierto: $I \le 0,05 \text{ mA}$ a $U_{\text{nom}} = 20 \text{ V}$                                                                                                                          |  |  |  |  |  |
| Pasiva                     | Independiente de la polaridad de conexión.                                                                                                                                                  |  |  |  |  |  |
|                            | $U_{\text{ext}} \le 32 \text{ VDC}$                                                                                                                                                         |  |  |  |  |  |
|                            | f <sub>máx</sub> en el menú de funcionamiento programado a f <sub>máx</sub> ≤ 100 Hz:                                                                                                       |  |  |  |  |  |
|                            | I ≤ 100 mA                                                                                                                                                                                  |  |  |  |  |  |
|                            | abierto: $I \le 0.05 \text{ mA}$ a $U_{\text{ext}} = 32 \text{ VDC}$                                                                                                                        |  |  |  |  |  |
|                            | cerrado: $U_{0, \text{máx}} = 0.2 \text{ V a I} \le 10 \text{ mA}$ $U_{0, \text{máx}} = 2 \text{ V a I} \le 100 \text{ mA}$                                                                 |  |  |  |  |  |
|                            | f <sub>máx</sub> en el menú de funcionamiento programado a 100 Hz < f <sub>máx</sub> ≤ 10 kHz:                                                                                              |  |  |  |  |  |
|                            | I ≤ 20 mA                                                                                                                                                                                   |  |  |  |  |  |
|                            | abierto: $I \le 0.05 \text{ mA}$ a $U_{\text{ext}} = 32 \text{ VDC}$                                                                                                                        |  |  |  |  |  |
|                            | cerrado: $U_{0, \text{ máx}} = 1,5 \text{ V a } I \le 1 \text{ mA}$ $U_{0, \text{ máx}} = 2,5 \text{ V a } I \le 10 \text{ mA}$ $U_{0, \text{ máx}} = 5,0 \text{ V a } I \le 20 \text{ mA}$ |  |  |  |  |  |

| Corte por bajo caudal     |                                                                                                                                                                                    |  |  |  |  |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Función                   | Punto de alarma e histéresis ajustable separada por cada salida, totalizador y pantalla                                                                                            |  |  |  |  |
| Punto de alarma           | Ajuste en incrementos de 0,1%.                                                                                                                                                     |  |  |  |  |
|                           | 020% (salida de corriente, salida de frecuencia) ó 0±9,999 m/s (salida de pulsos)                                                                                                  |  |  |  |  |
| Histéresis                | Ajuste en incrementos de 0,1%.                                                                                                                                                     |  |  |  |  |
|                           | 05% (salida de corriente, salida de frecuencia) ó 05 m/s (salida de pulsos)                                                                                                        |  |  |  |  |
| Constante de tiempo       |                                                                                                                                                                                    |  |  |  |  |
| Función                   | La constante de tiempo corresponde al tiempo transcurrido hasta el 67% del valor final que ha sido alcanzado según una función.                                                    |  |  |  |  |
| Ajustes                   | Ajuste en incrementos de 0,1 segundos.                                                                                                                                             |  |  |  |  |
|                           | 0100 segundos                                                                                                                                                                      |  |  |  |  |
| Salida de estado / alarma |                                                                                                                                                                                    |  |  |  |  |
| Función y programaciones  | Ajustable como conversión de rango de medida automático, visualización de dirección de caudal, desbordamiento del totalizador, error, punto de alarma o detección de tubería vacía |  |  |  |  |
|                           | Control de válvula con función de dosificación activada                                                                                                                            |  |  |  |  |
|                           | Estado y/o control: ON (encendido) u OFF (apagado)                                                                                                                                 |  |  |  |  |
| Datos de operación        | I/O básico + Modbus                                                                                                                                                                |  |  |  |  |
| Pasiva                    | Independiente de la polaridad de conexión.                                                                                                                                         |  |  |  |  |
|                           | $U_{\text{ext}} \le 32 \text{ VDC}$ $I \le 100 \text{ mA}$                                                                                                                         |  |  |  |  |
|                           | abierto:<br>$I \le 0,05 \text{ mA}$ a $U_{\text{ext}} = 32 \text{ VDC}$                                                                                                            |  |  |  |  |
|                           | cerrado: $U_0 = 0.2 \text{ V a I} \le 10 \text{ mA}$ $U_0 = 2 \text{ V a I} \le 100 \text{ mA}$                                                                                    |  |  |  |  |
| Modbus                    |                                                                                                                                                                                    |  |  |  |  |
| Descripción               | Modbus RTU, Master / Slave, RS485                                                                                                                                                  |  |  |  |  |
| Rango de direcciones      | 1247                                                                                                                                                                               |  |  |  |  |
| Transmisión               | Soportado con el código de función 16                                                                                                                                              |  |  |  |  |
| Baud rate soportado       | 1200, 2400, 3600, 4800, 9600, 19200, 38400, 57600, 115200 Baud                                                                                                                     |  |  |  |  |


## Aprobaciones y certificados

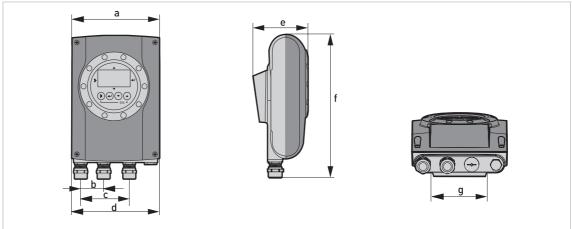
| '                                  |                                                                                                                                                                                                                   |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| CE                                 | Este equipo cumple los requisitos legales de las directivas UE pertinentes.<br>Al identificarlo con el marcado CE, el fabricante certifica que el producto ha<br>superado con éxito las pruebas correspondientes. |  |  |  |
|                                    | Para obtener información exhaustiva sobre las directivas y normas UE y los certificados aprobados, consulte la declaración UE o la página web del fabricante.                                                     |  |  |  |
| Otros estándares y aprobaciones    |                                                                                                                                                                                                                   |  |  |  |
| Resistencia a choque y vibraciones | IEC 60068-2-3; EN 60068-2-6 y EN 60068-2-27; IEC 61298-3                                                                                                                                                          |  |  |  |
| NAMUR                              | NE 21, NE 43, NE 53                                                                                                                                                                                               |  |  |  |

# 2.2 Dimensiones y pesos

## 2.2.1 Alojamiento

## Versión de pared




## Dimensiones y peso en mm y kg

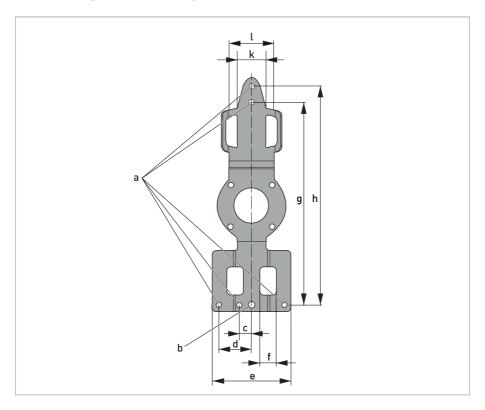
|                            | Dimensiones [mm] |    |    |     |     |       |     | Peso |      |      |
|----------------------------|------------------|----|----|-----|-----|-------|-----|------|------|------|
|                            | a                | b  | С  | d   | е   | f     | g   | h    | k    | [kg] |
| Versión con y sin pantalla | 157              | 40 | 80 | 120 | 248 | 111,7 | 260 | 28,4 | 51,3 | 1,9  |

## Dimensiones y peso en pulgadas y libras

|                            | Dimensiones [pulgadas] |      |      |      |      |      |       | Peso |      |          |
|----------------------------|------------------------|------|------|------|------|------|-------|------|------|----------|
|                            | а                      | b    | С    | d    | е    | f    | g     | h    | k    | [libras] |
| Versión con y sin pantalla | 6,18                   | 1,57 | 3,15 | 4,72 | 9,76 | 4,39 | 10,24 | 1,12 | 2,02 | 4,2      |

## Versión compacta




## Dimensiones y peso en mm y kg

|                            | Dimensiones [mm] |    |    |       |     |     | Peso |      |
|----------------------------|------------------|----|----|-------|-----|-----|------|------|
|                            | а                | b  | С  | d     | е   | f   | g    | [kg] |
| Versión con y sin pantalla | 157              | 40 | 80 | 148,2 | 101 | 260 | 95,5 | 1,8  |

## Dimensiones y peso en pulgadas y libras

|                            | Dimensiones [pulgadas] |      |      |      |      |       | Peso<br>[libras] |          |
|----------------------------|------------------------|------|------|------|------|-------|------------------|----------|
|                            | a                      | b    | С    | d    | е    | f     | g                | [libras] |
| Versión con y sin pantalla | 6,18                   | 1,57 | 3,15 | 5,83 | 3,98 | 10,24 | 3,76             | 4,0      |

# 2.2.2 Placa de montaje, versión de pared



## Dimensiones en mm y pulgadas

|   | [mm] | [pulgadas] |
|---|------|------------|
| а | Ø6,5 | Ø0,26      |
| b | Ø8,1 | Ø0,3       |
| С | 15   | 0,6        |
| d | 40   | 1,6        |
| е | 96   | 3,8        |
| f | 20   | 0,8        |
| g | 248  | 9,8        |
| h | 268  | 10,5       |
| k | 35   | 1,4        |
| l | 55   | 2,2        |

## 2.3 Tablas de caudales

# Velocidad de caudal en m/s y m³/h

|         | Q <sub>100 %</sub> en m <sup>3</sup> /h |         |          |               |  |
|---------|-----------------------------------------|---------|----------|---------------|--|
| v [m/s] | 0,3                                     | 1       | 3        | 12            |  |
| DN [mm] | Caudal mínimo                           | Caudal  | nominal  | Caudal máximo |  |
| 2,5     | 0,005                                   | 0,02    | 0,05     | 0,21          |  |
| 4       | 0,01                                    | 0,05    | 0,14     | 0,54          |  |
| 6       | 0,03                                    | 0,10    | 0,31     | 1,22          |  |
| 10      | 0,08                                    | 0,28    | 0,85     | 3,39          |  |
| 15      | 0,19                                    | 0,64    | 1,91     | 7,63          |  |
| 20      | 0,34                                    | 1,13    | 3,39     | 13,57         |  |
| 25      | 0,53                                    | 1,77    | 5,30     | 21,21         |  |
| 32      | 0,87                                    | 2,90    | 8,69     | 34,74         |  |
| 40      | 1,36                                    | 4,52    | 13,57    | 54,29         |  |
| 50      | 2,12                                    | 7,07    | 21,21    | 84,82         |  |
| 65      | 3,58                                    | 11,95   | 35,84    | 143,35        |  |
| 80      | 5,43                                    | 18,10   | 54,29    | 217,15        |  |
| 100     | 8,48                                    | 28,27   | 84,82    | 339,29        |  |
| 125     | 13,25                                   | 44,18   | 132,54   | 530,15        |  |
| 150     | 19,09                                   | 63,62   | 190,85   | 763,40        |  |
| 200     | 33,93                                   | 113,10  | 339,30   | 1357,20       |  |
| 250     | 53,01                                   | 176,71  | 530,13   | 2120,52       |  |
| 300     | 76,34                                   | 254,47  | 763,41   | 3053,64       |  |
| 350     | 103,91                                  | 346,36  | 1039,08  | 4156,32       |  |
| 400     | 135,72                                  | 452,39  | 1357,17  | 5428,68       |  |
| 450     | 171,77                                  | 572,51  | 1717,65  | 6870,60       |  |
| 500     | 212,06                                  | 706,86  | 2120,58  | 8482,32       |  |
| 600     | 305,37                                  | 1017,90 | 3053,70  | 12214,80      |  |
| 700     | 415,62                                  | 1385,40 | 4156,20  | 16624,80      |  |
| 800     | 542,88                                  | 1809,60 | 5428,80  | 21715,20      |  |
| 900     | 687,06                                  | 2290,20 | 6870,60  | 27482,40      |  |
| 1000    | 848,22                                  | 2827,40 | 8482,20  | 33928,80      |  |
| 1200    | 1221,45                                 | 3421,20 | 12214,50 | 48858,00      |  |

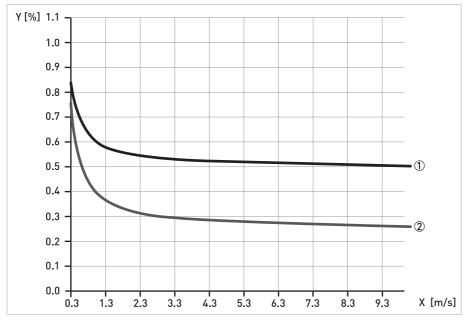
# Velocidad de caudal en pies/s y galones/min

|                 | Q <sub>100 %</sub> en galones/min |          |          |               |  |  |
|-----------------|-----------------------------------|----------|----------|---------------|--|--|
| v [pies/s]      | 1                                 | 3,3      | 10       | 40            |  |  |
| DN<br>[Pulgada] | Caudal mínimo                     | Caudal   | nominal  | Caudal máximo |  |  |
| 1/10            | 0,02                              | 0,09     | 0,23     | 0,93          |  |  |
| 1/8             | 0,06                              | 0,22     | 0,60     | 2,39          |  |  |
| 1/4             | 0,13                              | 0,44     | 1,34     | 5,38          |  |  |
| 3/8             | 0,37                              | 1,23     | 3,73     | 14,94         |  |  |
| 1/2             | 0,84                              | 2,82     | 8,40     | 33,61         |  |  |
| 3/4             | 1,49                              | 4,98     | 14,94    | 59,76         |  |  |
| 1               | 2,33                              | 7,79     | 23,34    | 93,36         |  |  |
| 1,25            | 3,82                              | 12,77    | 38,24    | 152,97        |  |  |
| 1,5             | 5,98                              | 19,90    | 59,75    | 239,02        |  |  |
| 2               | 9,34                              | 31,13    | 93,37    | 373,47        |  |  |
| 2,5             | 15,78                             | 52,61    | 159,79   | 631,16        |  |  |
| 3               | 23,90                             | 79,69    | 239,02   | 956,09        |  |  |
| 4               | 37,35                             | 124,47   | 373,46   | 1493,84       |  |  |
| 5               | 58,35                             | 194,48   | 583,24   | 2334,17       |  |  |
| 6               | 84,03                             | 279,97   | 840,29   | 3361,17       |  |  |
| 8               | 149,39                            | 497,92   | 1493,29  | 5975,57       |  |  |
| 10              | 233,41                            | 777,96   | 2334,09  | 9336,37       |  |  |
| 12              | 336,12                            | 1120,29  | 3361,19  | 13444,77      |  |  |
| 14              | 457,59                            | 1525,15  | 4574,93  | 18299,73      |  |  |
| 16              | 597,54                            | 1991,60  | 5975,44  | 23901,76      |  |  |
| 18              | 756,26                            | 2520,61  | 7562,58  | 30250,34      |  |  |
| 20              | 933,86                            | 3112,56  | 9336,63  | 37346,53      |  |  |
| 24              | 1344,50                           | 4481,22  | 13445,04 | 53780,15      |  |  |
| 28              | 1829,92                           | 6099,12  | 18299,20 | 73196,79      |  |  |
| 32              | 2390,23                           | 7966,64  | 23902,29 | 95609,15      |  |  |
| 36              | 3025,03                           | 10082,42 | 30250,34 | 121001,37     |  |  |
| 40              | 3734,50                           | 12447,09 | 37346,00 | 149384,01     |  |  |
| 48              | 5377,88                           | 17924,47 | 53778,83 | 215115,30     |  |  |

## 2.4 Precisión de medida

Todo caudalímetro electromagnético se calibra por comparación directa del volumen. La calibración en húmedo valida el rendimiento del caudalímetro en las condiciones de referencia respecto a los límites de precisión.

Por lo general, los límites de precisión de los caudalímetros electromagnéticos son el resultado del efecto combinado de linealidad, estabilidad del punto cero e incertidumbre de calibración.


#### Condiciones de referencia

· Producto: agua

• Temperatura: +5...+35°C / +41...+95°F

• Presión de operación: 0,1...5 barg / 1,5...72,5 psig

Sección de entrada: ≥ 5 DN
Sección de salida: ≥ 2 DN



X [m/s]: velocidad de caudal Y [%]: precisión de valor medido (mv)

|                | DN [mm] | DN<br>[Pulgada] | Precisión estándar ①  | Precisión optimizada ②              |
|----------------|---------|-----------------|-----------------------|-------------------------------------|
| OPTIFLUX 1050  | 10150   | 3/86            | ±0,5% del vm ± 1 mm/s | ±0,25% del vm ± 1,5 mm/s            |
| OPTIFLUX 2050  | 101200  | 3/848           |                       |                                     |
| OPTIFLUX 4050  |         |                 |                       | Calibración ampliada en<br>2 puntos |
| OPTIFLUX 6050  | 10150   | 3/86            |                       | 2 pullos                            |
| WATERFLUX 3050 | 25600   | 124             |                       | -                                   |

## 3.1 Uso previsto

Los caudalímetros electromagnéticos están diseñados exclusivamente para medir el caudal y la conductividad de un medio líquido conductivo eléctricamente.

Si el equipo no se utiliza según las condiciones de operación (consultar el capítulo "Datos técnicos"), la protección prevista podría verse perjudicada.

Este equipo se considera equipo del Grupo 1, Clase A según la norma CISPR11:2009. Está destinado al uso en ambiente industrial. Podría haber dificultades potenciales para garantizar la compatibilidad electromagnética en otros ambientes debido a perturbaciones conducidas y radiadas.

## 3.2 Especificaciones de la instalación

Se deben tomar las siguientes precauciones para asegurar una instalación fiable.

- Asegúrese de que hay espacio suficiente a ambos lados.
- Proteja el convertidor de señal de la luz del sol directa e instale un parasol si es necesario.
- Los convertidores de señal instalados en los armarios de control requieren una refrigeración adecuada, por ej. un ventilador o intercambiador de calor.
- No exponga el convertidor de señal a una vibración intensa. Los equipos de medida están probados para un nivel de vibración según IEC 68-2-64.

## 3.3 Montaje de la versión compacta

El convertidor de señal se monta directamente en el sensor de caudal. Para instalar el caudalímetro, por favor, siga las instrucciones de la documentación del producto suministrado para sensor de caudal.

# 3.4 Montaje de la cubierta, versión remota

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

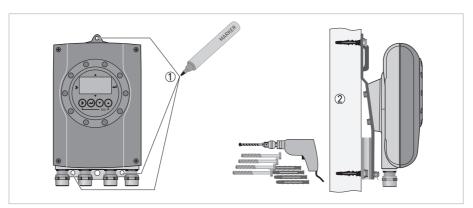



Figura 3-1: Montaje de la cubierta

- ① Prepare los orificios con la ayuda de la placa de montaje.
- ② Fije el equipo con seguridad a la pared con la placa de montaje.

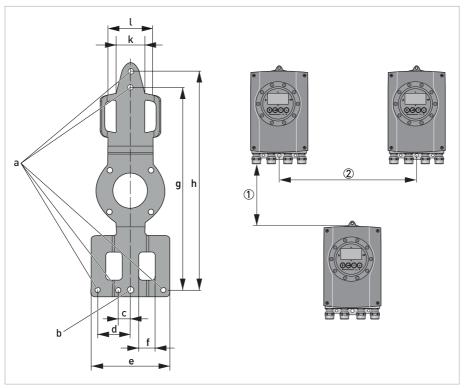



Figura 3-2: Dimensiones de la placa de montaje y distancias para el montaje de varios equipos uno al lado de otro

- ① 277 mm / 10,89" ② 310 mm / 12,2"

|   | [mm] | [pulgadas] |
|---|------|------------|
| а | Ø6,5 | Ø0,26      |
| b | Ø8,1 | Ø0,3       |
| С | 15   | 0,6        |
| d | 40   | 1,6        |
| е | 96   | 3,8        |
| f | 20   | 0,8        |
| g | 248  | 9,8        |
| h | 268  | 10,5       |
| k | 35   | 1,4        |
| l | 55   | 2,2        |

## 4.1 Instrucciones de seguridad

Todo el trabajo relacionado con las conexiones eléctricas sólo se puede llevar a cabo con la alimentación desconectada. ¡Tome nota de los datos de voltaje en la placa de características!

¡Siga las regulaciones nacionales para las instalaciones eléctricas!

Se deben seguir sin excepción alguna las regulaciones de seguridad y salud ocupacional regionales. Cualquier trabajo hecho en los componentes eléctricos del equipo de medida debe ser llevado a cabo únicamente por especialistas entrenados adecuadamente.

Mire la placa del fabricante del equipo para asegurarse de que el equipo se ha entregado según su pedido. Compruebe en la placa del fabricante la impresión correcta del voltaje para su alimentación.

## 4.2 Preparación de los cables de señal y de corriente de campo

Los materiales de ensamblaje y las herramientas no son parte de la entrega. Emplee los materiales de ensamblaje y las herramientas conforme a las directrices de seguridad y salud ocupacional pertinentes.

### 4.2.1 Cable de señal A (tipo DS 300), construcción

- El cable de señal A es un cable con doble protección para la transmisión de las señales entre el sensor de caudal y el convertidor de señal.
- Radio de curva: ≥ 50 mm / 2"

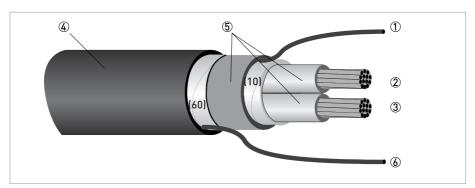



Figura 4-1: Cable de señal de construcción A

- ① Hilo trenzado (1) para la protección interna (10), 1,0 mm² Cu / AWG 17 (no aislado, desnudo)
- ② Hilo de aislamiento (2), 0,5 mm<sup>2</sup> Cu / AWG 20
- 4 Funda exterior
- (5) Capas de aislamiento
- 6 Hilo trenzado (6) para la protección externa (60)

#### 4.2.2 Longitud del cable de señal A

Para temperaturas del medio superiores a los 150°C / 300°F, se necesita un cable de señal especial y una toma intermedia SD. Éstos están disponibles así como los esquemas de conexión eléctrica.

| Sensor de caudal | Diámetro nominal |            | Conductividad             | Curva del cable de |  |
|------------------|------------------|------------|---------------------------|--------------------|--|
|                  | DN [mm]          | [pulgadas] | eléctrica mín.<br>[µS/cm] | señal A            |  |
| OPTIFLUX 1000 F  | 10150            | 3/86       | 20                        | A1                 |  |
| OPTIFLUX 2000 F  | 25150            | 16         | 20                        | A1                 |  |
|                  | 2001200          | 848        | 20                        | A2                 |  |
| OPTIFLUX 4000 F  | 10150            | 3/86       | 20                        | A1                 |  |
|                  | 2001200          | 848        | 20                        | A2                 |  |
| OPTIFLUX 6000 F  | 10150            | 3/86       | 20                        | A1                 |  |
| WATERFLUX 3000 F | 25600            | 124        | 20                        | A1                 |  |

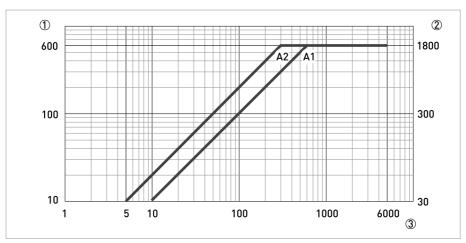



Figura 4-2: Longitud máxima del cable de señal A

- ① Longitud máxima del cable de señal A entre el sensor de caudal y el convertidor de señal [m]
- ② Longitud máxima del cable de señal A entre el sensor de caudal y el convertidor de señal [ft]
- 3 Conductividad eléctrica del medio a medir [µS/cm]

#### 4.2.3 Esquema de conexión para el cable de señal y de corriente de campo

El aparato debe estar conectado a tierra según la regulación para proteger al personal de descargas eléctricas.

- Se emplea un cable de cobre a 2 hilos con protección como cable de corriente de campo. La protección DEBE estar conectada al alojamiento del sensor de caudal y al convertidor de señal.
- La protección externa (60) está conectada en el compartimento de terminales del sensor de caudal directamente mediante la protección y un clip.
- Radio de curva del cable de señal y de corriente de campo: ≥ 50 mm / 2"
- La siguiente figura es esquemática. Las posiciones de los terminales de conexión eléctrica pueden variar dependiendo de la versión del alojamiento.

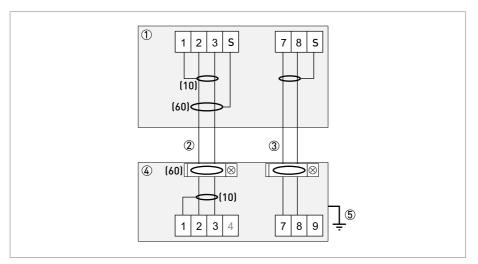



Figura 4-3: Esquema de conexión para el cable de señal y de corriente de campo

- ① Compartimento de terminales eléctricos en el convertidor de señal
- 2 Cable de señal A
- 3 Cable de corriente de campo C
- 4 Compartimento de terminales eléctricos en el sensor de caudal
- ⑤ Tierra funcional FE

#### 4.3 Puesta a tierra del sensor de caudal

¡No debe haber diferencia de potencial entre el sensor de caudal y el alojamiento o la tierra de protección del convertidor de señal!

- El sensor de caudal debe estar puesto a tierra adecuadamente.
- El cable de tierra no debería transmitir ningún voltaje de interferencia.
- No utilice el cable de conexión a tierra para conectar cualquier otro equipo eléctrico a tierra al mismo tiempo.
- Los sensores de caudal están conectados a tierra por medio de un conductor de tierra funcional FE.
- Se suministran por separado instrucciones especiales para la puesta a tierra de varios de los sensores de caudal disponibles.
- La documentación del sensor de caudal contiene también indicaciones para el uso de los anillos de puesta a tierra y para la instalación del sensor de caudal en tuberías metálicas o de plástico con recubrimiento interno.

#### 4.4 Conexión de la alimentación

- Para proteger a los operadores de una descarga eléctrica, durante la instalación del cable de la fuente de alimentación debe ejecutarse con un revestimiento de aislamiento hasta la cubierta principal. ¡Los cables aislados individuales tienen que estar sólo por debajo de la cubierta de la red!
- Si no hay cobertura de red o si se ha perdido, el equipo 100...230 VAC sólo puede accionarse desde el exterior (utilizando un lápiz magnético) mientras está cerrado.
- Los alojamientos de los equipos, que están diseñados para proteger el equipo electrónico del polvo y la humedad, deberían guardarse siempre bien cerrados. Las distancias de fuga y los juegos están dimensionados según VDE 0110 e IEC 664 para categoría de contaminación 2. Los circuitos de alimentación están diseñados para categorías de sobretensión III y los circuitos de salida para categoría de sobretensión II.
- Se debe incluir cerca del equipo un fusible de protección (I<sub>N</sub> ≤ 16 A) para la entrada al circuito de alimentación, así como un separador (interruptor del circuito) para aislar el convertidor de señal.

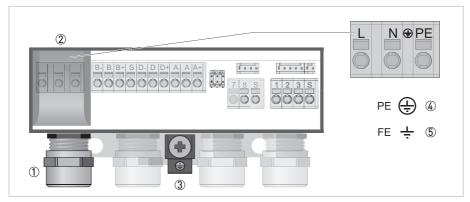



Figura 4-4: Compartimiento de terminales de alimentación

- 1 Entrada del cable de alimentación
- 2 Cubierta
- 3 Terminal de tierra
- 4 100...230 VAC (-15% / +10%)
- ⑤ 24 VDC (-30% /+30%)
- Para abrir la tapa del compartimento de terminales eléctricos, presione ligeramente en las paredes laterales de la cubierta ②.
- Gire la cubierta hacia arriba.
- Conecte la alimentación.
- Cierre la cubierta de nuevo girándola hacia abajo.

#### 100...230 VAC (rango de tolerancia: -15% / +10%)

• Observe la tensión y la frecuencia de alimentación (50...60 Hz) en la placa de identificación.

240 VAC + 5% incluido en el rango de tolerancia.

#### 24 VDC (rango de tolerancia: -30% / +30%)

- ¡Observe los datos en la placa de identificación!
- Cuando lo conecte a tensiones funcionales muy bajas, proporcione una instalación con una separación de protección (PELV) (según VDE 0100 / VDE 0106 y/o IEC 364 / IEC 536 o regulaciones nacionales relevantes).

## 4.5 Entradas / salidas, visión general

## 4.5.1 Descripción del número CG



Figura 4-5: Marcar (número CG) del módulo de electrónica y variantes de salida

- ① Número ID: 0
- ② Número ID: 0 = estándar; 9 = especial
- 3 Alimentación
- 4 Pantalla (versiones del lenguaje)
- ⑤ Versión de salida

#### 4.5.2 Versiones de salidas fijas, no modificables

Este convertidor de señal está disponible con varias combinaciones de salidas.

- Las casillas grises en las tablas denotan terminales de conexión no usados o no asignados.
- ullet En la tabla, sólo se representan los dígitos finales del Nº CG.
- Los terminales D- y A- están conectados para una salida de frecuencia/pulso activo (sin aislamiento galvánico).
- Están disponibles una salida de pulso/frecuencia activa o pasiva, o la salida de estado/alarma activa o pasiva. ¡No es posible utilizar ambas salidas al mismo tiempo!

#### Salidas básicas (I/Os)

| Nº CG      | Terminales d | Terminales de conexión                 |                       |                                             |               |                                             |       |
|------------|--------------|----------------------------------------|-----------------------|---------------------------------------------|---------------|---------------------------------------------|-------|
|            | S            | D-                                     | D                     | D+                                          | A-            | Α                                           | A+    |
| 100<br>R00 | •            | P <sub>p</sub> / S <sub>p</sub> pasiva |                       | I <sub>p</sub> + HART <sup>®</sup> pasiva ② |               |                                             |       |
| 1.00       |              | conexión a A-                          | P <sub>a</sub> activa |                                             | conexión a D- | I <sub>a</sub> + HART <sup>®</sup> activa ② |       |
|            |              | P <sub>p</sub> / S <sub>p</sub> pasiva |                       |                                             |               | I <sub>a</sub> + HART® act                  | iva ② |

<sup>1</sup> Protección

## Modbus (I/O) (opción)

| Nº CG | Terminales de conexión |       |               |            |
|-------|------------------------|-------|---------------|------------|
|       | B-                     | В     | B+            | S          |
| R 0 0 | Sign. A (D0-)          | Común | Sign. B (D1+) | Protección |

## Descripción de abreviaciones empleadas

| la | Ip | Salida de corriente activa o pasiva           |  |
|----|----|-----------------------------------------------|--|
| Pa | Pp | Salida de pulsos / frecuencia activa o pasiva |  |
| Sa | Sp | Salida de estado / alarma activa o pasiva     |  |

<sup>2</sup> Cambio de función por reconexión

## 4.6 Colocación correcta de los cables eléctricos

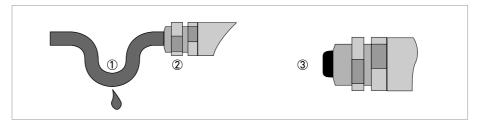
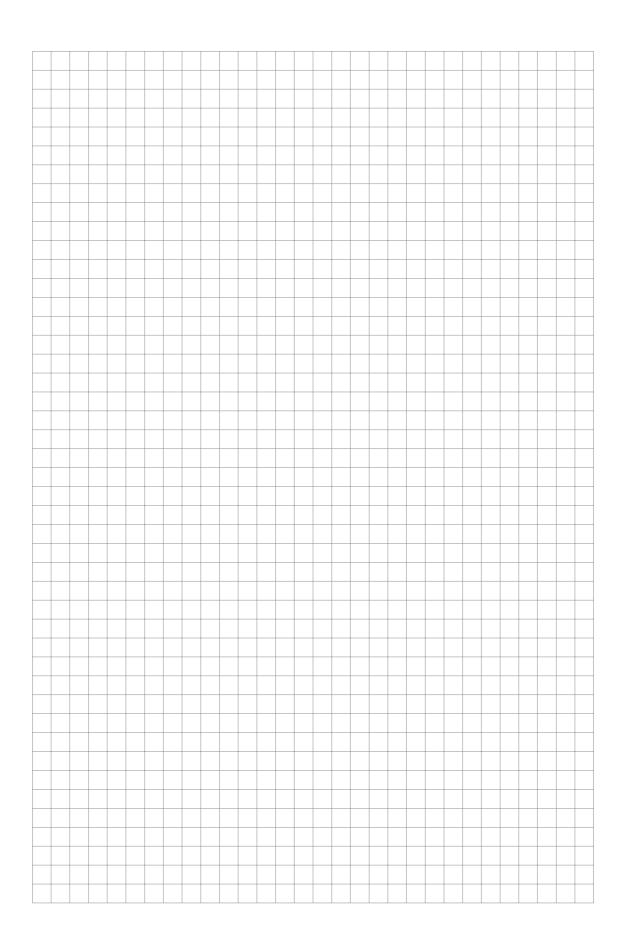
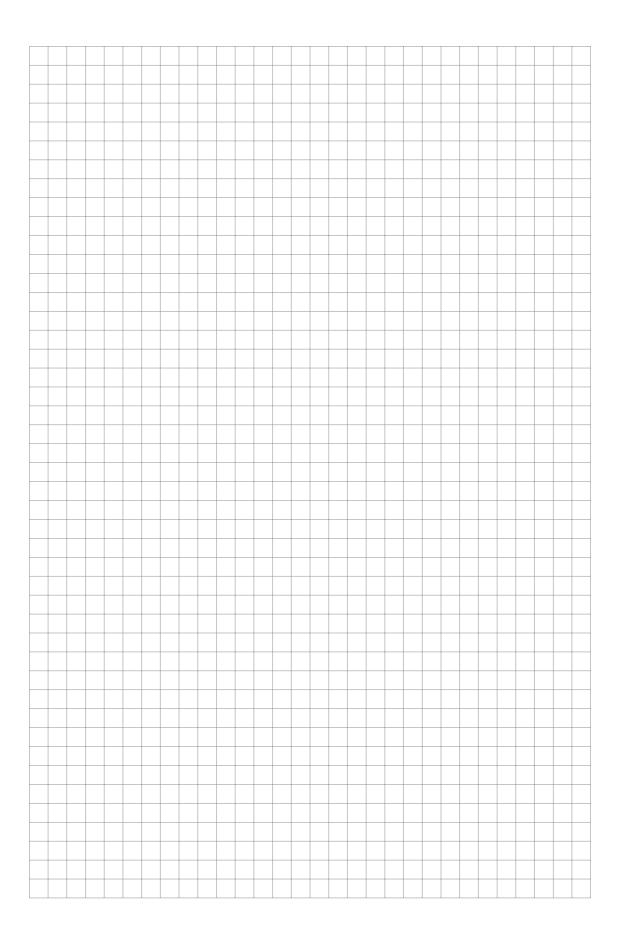
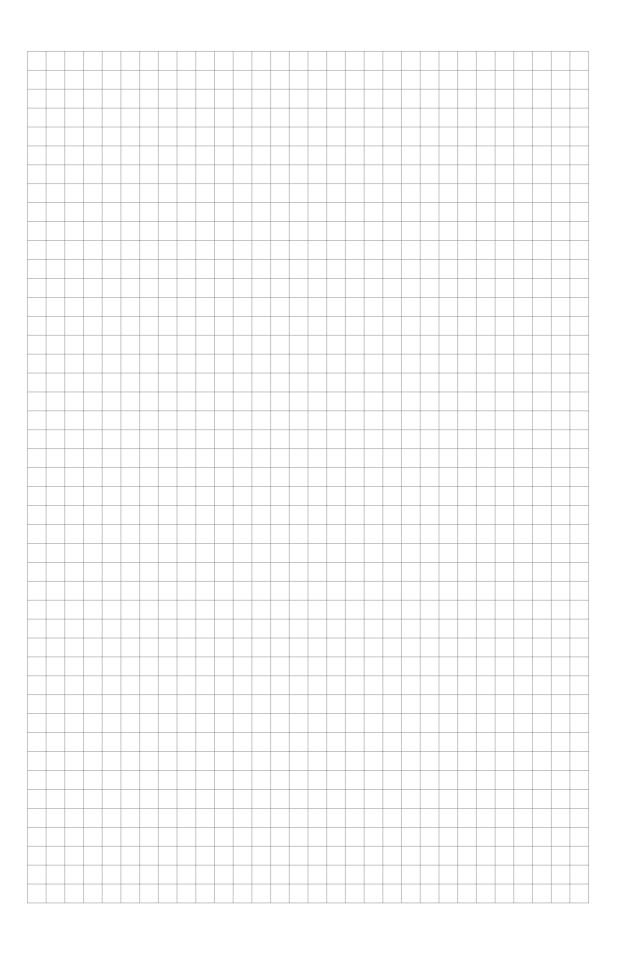






Figura 4-6: Proteja el alojamiento del polvo y del agua

- ① Para versiones compactas con entradas de cable casi horizontalmente orientadas, coloque los cables eléctricos necesarios con un bucle antigoteo como se muestra en la ilustración.
- ② Apriete la conexión del tornillo de entrada del cable con seguridad.
- ③ Selle las entradas del cable que no se necesiten con un tapón.









#### KROHNE – Equipos de proceso y soluciones de medida

- Caudal
- Nivel
- Temperatura
- Presión
- Análisis de procesos
- Servicios

Oficina central KROHNE Messtechnik GmbH Ludwig-Krohne-Str. 5 47058 Duisburg (Alemania)

Tel.: +49 203 301 0 Fax: +49 203 301 10389 info@krohne.com

La lista actual de los contactos y direcciones de KROHNE se encuentra en: www.krohne.com

